首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14058篇
  免费   1852篇
  国内免费   993篇
电工技术   624篇
综合类   792篇
化学工业   2717篇
金属工艺   3476篇
机械仪表   654篇
建筑科学   71篇
矿业工程   151篇
能源动力   376篇
轻工业   1237篇
水利工程   7篇
石油天然气   159篇
武器工业   146篇
无线电   1357篇
一般工业技术   2402篇
冶金工业   1161篇
原子能技术   1368篇
自动化技术   205篇
  2024年   29篇
  2023年   321篇
  2022年   524篇
  2021年   658篇
  2020年   618篇
  2019年   605篇
  2018年   596篇
  2017年   629篇
  2016年   569篇
  2015年   524篇
  2014年   711篇
  2013年   933篇
  2012年   864篇
  2011年   981篇
  2010年   696篇
  2009年   776篇
  2008年   714篇
  2007年   978篇
  2006年   853篇
  2005年   702篇
  2004年   680篇
  2003年   522篇
  2002年   393篇
  2001年   340篇
  2000年   265篇
  1999年   234篇
  1998年   177篇
  1997年   176篇
  1996年   160篇
  1995年   120篇
  1994年   99篇
  1993年   105篇
  1992年   80篇
  1991年   56篇
  1990年   40篇
  1989年   40篇
  1988年   24篇
  1987年   9篇
  1986年   8篇
  1985年   12篇
  1984年   6篇
  1983年   5篇
  1982年   32篇
  1981年   22篇
  1979年   4篇
  1978年   4篇
  1977年   2篇
  1976年   2篇
  1959年   1篇
  1951年   4篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
31.
The continuous and dense Ti–N compound layers with a thickness ranging from 0.7 to 2.1 μm were formed on the titanium by plasma nitriding at 700 °C for different times with hollow cathode discharge assistance. Scanning electron microscope (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used to characterize the nitrided layer. XRD and XPS results showed that the compound layer was mainly composed of Ti2N phase. The corrosion current density of 4 h nitrided titanium was 0.016 μA/cm2 (cathode) and 0.03 μA/cm2 (anode), respectively. The electrical conductivity of samples was evaluated by means of the interfacial contact resistance (ICR). The value of 4 h nitrided titanium was 4.94 mΩ-cm2 which was much lower than that of original titanium 26.25 mΩ-cm2 under applied force of 150 Ncm?2 after corrosion test. The results showed that the electrical conductivity and corrosion resistance of the titanium bipolar plates (BPs) were apparently improved with the formation of Ti2N compound layer.  相似文献   
32.
33.
Construction of structural defects in photocatalysts is a powerful tool for regulating their photocatalytic performance. In this work, we develop a facile one-step coupling cold plasma and thermal polymerization approach to synthesize a series of nitrogen defect-rich graphitic carbon nitrides (C3N4-x), which are used for visible-light-driven hydrogen generation from water. The nitrogen defect-induced band structure regulation of C3N4-x catalysts can be carried out through controlling the bombardment time and excitation power of generator during the plasma modification process. The defective C3N4-x catalysts have the extended visible light absorption and improved separation efficiency of photogenerated charge carriers, which results in the boosted hydrogen generation activity. Particularly, the optimal C3N4-x possesses a hydrogen generation rate of 2.46 mmol h?1 g?1, which is about 4.5 times higher than the pristine C3N4 synthesized by the single thermal polymerization of urea. The cold plasma modification-based one-step synthesis approach guides us for rationally designing defective nanomaterials with excellent catalytic performance.  相似文献   
34.
A key problem in CO_2 conversion by thermal plasma is suppressing the inverse reactions,CO?+?O?→?CO_2 and CO?+?0.5O_2?→?CO_2, to simultaneously obtain high CO yield and energy efficiency. This can be done by quickly quenching the decomposed gas or rapidly taking away free oxygen from decomposed gas. In this paper, experiments of CO_2 conversion by thermal plasma with carbon as a reducing agent are presented. Carbon quickly devoured free oxygen in thermal plasma decomposed gas, and not only is the inverse reaction completely suppressed, but the discharge energy to form oxygen atoms, oxygen molecular, and thermal energy is also reused.A CO_2 conversion rate of 67%–94% and the corresponding electric energy efficiency of about 70% are achieved, both are much higher than that seen so far by other plasma implementations.  相似文献   
35.
Thermal flow characteristics and the methane conversion reaction in a low power arc plasma reactor for efficient storage and transport of methane, which is the main component of shale gas, were simulated. The temperature and velocity distributions were calculated according to the type of discharge gases and arc current level by a self-developed magnetohydrodynamics (MHD) code and a commercial ANSYS-FLUENT code; the transport of chemical species was analyzed as including the chemical reactions of methane conversion. The simulated results were verified by the comparison of calculated and measured arc voltages with permissible low error as under 4%. Three C2 hydrocarbon gases with ethane (C2H6), ethylene (C2H4), and acetylene (C2H2) were selected as the converted species of methane from experimental data. The mass fraction of C2 hydrocarbons and hydrogen as the product of the conversion reaction at the reactor was also calculated. Those values show good agreement with the actual experimental results in that the major conversion reaction occurred in C2H2 and hydrogen, and the conversions to C2H6, C2H4, and hydrogen were minor reactions of methane pyrolysis conversion.  相似文献   
36.
Hybrid dielectric barrier discharges are investigated for plasma generated on the surface of a dielectric layer, where two conducting electrodes of high voltage and ground are formulated on the upper and bottom surfaces. Using a flexible thin polyimide-film of a thickness ranging from 25 to 125 μm, a plasma is generated with a voltage of about 1 kV and a frequency of 40 kHz.However, the surface of the dielectric layer was etched through a chemical reaction involving plasma oxygen radical species, and thus the polyimide films failed readily, resulting in dielectric breakdown within short operating time ranging from a few minutes to several tens of minutes,based on the film thicknesses of 25 μm and 125 μm, respectively. These plasma erosions were prevented by coating the polyimide surface with a 25 μm thick silicone paste. The siliconecoated film surface was then reinforced remarkably against plasma erosion as the organic polymer was vulnerable to chemical reaction of the plasma species, while the inorganic silicone exhibited a high chemical resistance against plasma erosion.  相似文献   
37.
Sintered silicon carbide (SiC) was etched by a dielectric barrier discharge source. A high voltage bipolar pulse was used with helium gas for the plasma generation. One stable filament plasma was generated and could be used for SiC etching. As the processing gas (NF3) mixing rate increased, the width and depth of the etching profile became narrower and deeper. The differentiated V–Q Lissajous method was used for measuring the capacitances (Ceq) of the electrode after the plasma turned on. The width of the etching profile was proportional to Ceq. As the current peak value Ismx of the substrate current increased, the volume removal rate of SiC increased. The etch depth was proportional to the ratio of Ismx to Ceq. Additionally, because of the different characteristics of the plasma disks on SiC substrate by the voltage polarity, the etching profile was unstable. However, in high NF3 mixing process, the etching profile became stable and deeper.  相似文献   
38.
39.
Two kinds of Cu-Al_2O_3 composites(with and without La) were prepared via mechanical alloying-spark plasma sintering(MA-SPS) method. Microstructure, mechanical properties and electrical resistivity were investigated systematically using metallography, scanning electron microscopy, transmission electron microscopy, mechanical and electrical properties testing. The results indicate that an appropriate amount of La can homogenize the distribution of Al_2O_3. As such, yield strength, ultimate tensile strength and elongation of Cu-Al_2O_3-La are greatly increased. Some semi-coherent interface between Cu and Al_2O_3 is found, which means a low interface energy. The grain shape of Cu changes to irregular band with the addition of La. This change results in a density decrease of grain boundary and reduces electrical resistance. Lanthanum may exist in the form of La_2O_3.  相似文献   
40.
In this study, the impact of TiN as a sintering aid on the relative density and microstructure of TiB2 ceramic was investigated. Monolithic TiB2 and TiB2 doped with 5?wt% TiN were sintered at 1900?°C for 7?min dwell time under the pressure of 40?MPa by spark plasma. The addition of TiN affected the microstructure of TiB2-based sample considerably depicting the finer grains in the as-sintered ceramic. X-ray diffraction evaluation indicated that no interaction occurred between the initial materials. However, detail investigation by the map analysis and energy dispersive spectroscopy results revealed the formation of in-situ nano-sized hBN secondary phase in the TiN-doped TiB2. In addition, TiN played a remarkable role on increasing the relative density of TiN-doped TiB2 ceramic producing a nearly fully dense ceramic with relative density of 99.9% in comparison with the monolithic ceramic having 96.7% relative density.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号